Finden Sie schnell selektives laserschmelzen für Ihr Unternehmen: 388 Ergebnisse

Selektives Laserschmelzen / Metallsintern (SLM)

Selektives Laserschmelzen / Metallsintern (SLM)

Rapid Prototyping mit Metall? Kein Problem für uns! Ob Aluminium, Edelstahl, Werkzeugstahl oder Titan – Rapidobject berät Sie gern zu Ihrem Metall 3D Druck! Die Herstellung der Bauteile erfolgt mit dem Laserstrahlschmelzen. Das Laserstrahlschmelzen ist ein additives Fertigungsverfahren, bei dem Bauteile schichtweise direkt aus einem pulverförmigen Werkstoff hergestellt werden. Allzu sehr unterscheidet sich das SLM-Verfahren nicht vom SLS-Verfahren. Anders als beim Selektiven Lasersintern (SLS) wird jedoch beim Selektiven Laserschmelzen (SLM) das Materialpulver nicht gesintert. Beim SLM-Verfahren wird das Materialpulver direkt an dem Bearbeitungspunkt durch die Wärmeenergie eines Laserstrahls lokal aufgeschmolzen. Der Bauraum mit dem Pulvermaterial wird bis knapp unter die Schmelztemperatur erhitzt. Damit das Material nicht oxidiert, wird meistens der Arbeitsraum mit einem Schutzgas gefüllt. Anwendungsgebiete - Luft- und Raumfahrt - Automobiltechnik - Medizintechnik - Maschinenbau - Werkzeugmaschinenbau - Werkzeugbau - Prototypenbau - Kleinserien - Technische Bauteile aus Metall min. Wandstärke:: 1 mm Schichtstärke:: 0,02 – 0,075 mm max. Bauraumgröße:: 280 x 280 x 360 mm Temperaturbeständigkeit:: 350 °C Produktionszeit:: 14 Tage
LED Taschenlampe REFLECTS-GOLDSBORO

LED Taschenlampe REFLECTS-GOLDSBORO

Ein echter Superlativ: Exquisite LED-Lampe aus Edelstahl mit besonders hellem Licht, Metall, Batterie inklusive, LED-Farbe weiß Artikelnummer: 366451 Druckbereich: 87 x 7 Zolltarifnummer: 85131000 Gewicht: 44,0 g
Optische Kontrolle

Optische Kontrolle

Unsere automatische optische Inspektion (AOI) bietet Ihnen fortschrittliche Technologien zur Qualitätssicherung in der Elektronikfertigung. Durch den Einsatz verschiedener Kameras und die Moiré-Streifengitter-Projektion können wir die Anwesenheit der Bauteile, die richtige Polung, die Qualität der Lötstellen und die exakte Positionierung der einzelnen Bauteile überprüfen. Fehlerhafte Leiterplatten werden klassifiziert und direkt nach gut und schlecht sortiert, wobei die schlecht klassifizierten Leiterplatten nach Möglichkeit direkt ausgebessert werden. Mit dem Schritt zum 3D-AOI haben wir unsere Inspektionsmöglichkeiten erweitert und können zusätzliche Höheninformationen erfassen. Dies ermöglicht einen umfassenden Blick aus verschiedenen Blickwinkeln und verbessert die Zuverlässigkeit bei der Identifizierung von Fehlern oder Unregelmäßigkeiten im Bauteil. Vertrauen Sie auf unsere Expertise und lassen Sie uns die Qualität Ihrer elektronischen Baugruppen durch unsere AOI-Technologien sicherstellen.
Inline-Testsysteme, 3-D Laser-Scanner, Qualitätskontrolle

Inline-Testsysteme, 3-D Laser-Scanner, Qualitätskontrolle

Umstellung von manuellen auf automatisierten Prüfprozess, senkt imens die Anzahl an falsch-positiven und falsch-negativen Ergebnissen in der Produktion von Rasierklingen. Unser Kunde stellt seit über 50 Jahren Rasierklingen her und beabsichtigt, durch die Integration von 3D Laserscannern in der Produktion, seinen Qualitätssicherungsablauf zu verbessern. Bis jetzt wurden zu diesem Zweck einzelne Proben gezogen und die Eigenschaften der Klinge manuell überprüft. Kritische Punkte dieser Anwendung Die manuelle Vermessung einer Klinge in Bezug auf Höhe und Winkel ist nicht nur zeitaufwändig, sondern auch fehleranfällig. Schon die Probenahme selbst ist statistisch möglicherweise willkürlich und daher nicht notwendigerweise repräsentativ. Dies führt häufig zu falschen Schlussfolgerungen. Lösung von QuellTech Für diese Aufgabe wurde der QuellTech Q6-45 Laserscanner gewählt, da er die strengen Anforderungen (± 0,01 mm und ± 0.1 °) am ehesten erfüllt. Weiterhin wurde von QuellTech eine 3D Software eingerichtet, die Höhe sowie wechselseitigen Abstand und Winkel für jede einzelne Klinge liefert. Einbaufehler wie gespreizte oder zusammengezogene Klingen werden ebenfalls erfolgreich erkennt. Vorteile für den Kunden Mit dem QuellTech Präzisions-Laserscanner kann der Kunde fortan auf Probenahme verzichten und kann stattdessen eine Inline-Messung mit bis zu 150 Klingen pro Minute durchführen. Dies beschleunigt nicht nur die gesamte Prüfung, sondern senkt auch drastisch die Anzahl an falsch-positiven und falsch-negativen Ergebnissen. Abmessungen: 13x24x7 cm (LxBXH) Gewicht: 1,6 kg
Kleinserienfertigung

Kleinserienfertigung

Mit unserem kleinen, aber effektiven Maschinenpark haben wir die Möglichkeit, besonders auch bei niedrigen Stückzahlen und bei Sonderkabeln individuell auf Kundenwünsche einzugehen. Wir bieten maßgeschneiderte Lösungen, die auf Ihre spezifischen Anforderungen zugeschnitten sind.
2D-Lasertechnik

2D-Lasertechnik

Wir arbeiten mit einer der modernsten Fiber-Laser Österreichs, einer Trumpf TruLaser 3030 Fiber mit 4 kW und Brightlinetechnologie. Dadurch sind wir in der Lage Edelstahl und Aluminiumblech bis zu einer Dicke von 20 mm zu lasern, bei Stahlblechen sogar bis 25 mm. Durch die Fibertechnik ist es uns auch möglich Messing nud Kupfer ohne Probleme bis zu einer Dicke von 8 mm zu bearbeiten.
SLM Druck – Selektives Laserschmelzen mit Metall

SLM Druck – Selektives Laserschmelzen mit Metall

Das selektive Laserschmelzen, auch Laser-Strahlschmelzen oder pulverbettbasiertes Schmelzen von Metall mittels Laserstrahl genannt, ist ein additives Fertigungsverfahren, das zur Gruppe der Strahlschmelzverfahren gehört. Ähnliche Verfahren sind das Elektronenstrahlschmelzen und das selektive Lasersintern.
3D Laserbearbeitung

3D Laserbearbeitung

Anlagen Programmierung Werkstoffe Anlagen Anlagen Primapower Optimo 2545 Laser: Schneidgas Stickstoff + Sauerstoff Mittlere Leistung: 200 W - 4.000 W Spitzenleistung: bis 10 kW Arbeitsbereich: X = 4.500 mm, Y = 2.500 mm, Z = 1.020 mm A = 360°, B = ±135°, C = ±10 mm, W (Vivida) = ±10 mm Primapower Rapido Evoluzione Laser: Schneidgas Stickstoff + Sauerstoff Mittlere Leistung: 200 W - 4.000 W Spitzenleistung: bis 10 kW Arbeitsbereich: X = 4.080 mm, Y = 1.530 mm, Z = 765 mm A = 360°, B = ±115°, C = ±10 mm Programmierung Programmierung CAD-System Tebis Teach-In Verfahren Werkstoffe Werkstoffe diverse Stähle bis 6,00 mm Aluminium bis 3,00 mm Kunststoff Plexiglas Primapower Rapido Evoluzione Primapower Rapido Evoluzione Primapower Optimo CP 4000 Primapower Optimo CP 4000
LED SMD E14 3,2W 340Lumen 2900K CRI>80

LED SMD E14 3,2W 340Lumen 2900K CRI>80

LED-Leuchtmittel, 54xSMD LED 4014, Tubular, 300 Grad, E14, AC 100-240 Volt, DC 80-269V, Verbrauch ca. 3,2 Watt, ca. 340 Lm, 2900K, CRI>80, warmweiss,Treiber für 24h- Anwendung, A++ Artikelnummer: LED54TU14L EAN: 4260373598368
Gravur und Abtragslasern

Gravur und Abtragslasern

Hier wird scharf geschossen! Durch den Einsatz unseres Oberflächenabtragslasers sind Präzisionsbearbeitungen in kaum zu glaubender Qualität möglich. Somit können wir unter anderem in folgenden Sparten unser Know-How zur Verfügung stellen: - Formen- und Werkzeugbau - Forschung und Technik - Modelbau - Uhrenindustrie - Zubehörindustrie Mit der Bearbeitung über 3 optische und bis zu 4 mechanische Achsen bieten wir eine Vielzahl von Möglichkeiten des 3D Konturenlasern, der 3D Gravur und auch der 3D Graustufenbearbeitung. Unser aktuelles Arbeitsfeld umfasst unter anderem das Bearbeiten von: - Graphitelektroden - Werkzeug für Steckerhülsen-Spritzgussteile - Prägestempel - Presswerkzeug - Gießformen - Gravuren in unterschiedlichsten Variationen Mit dem Konturenlasern sind wir in der Lage mittels konturparallelem Laserabtragsglätten Oberflächengüten bis Ra 0,8 µm herzustellen. Unser Gravurlasern bietet neben der Tiefenvariabilität auch eine Entformungs-Schrägenvariabilität, die auch den senkrechten Wandabtrag ermöglicht. Das Graustufenlasern bietet uns die Möglichkeit selbst über Bitmap-Formate den Graustufen unterschiedliche Tiefen zuzuordnen und auszulasern, um z. B. auch Ihr Firmenlogo fast unverwüstlich einzubrennen.
Laser-Beschriftungsservice

Laser-Beschriftungsservice

z.B. für Kennzeichnungen aller Art
Selektives Lasersintern (SLS) - 3D Druck

Selektives Lasersintern (SLS) - 3D Druck

Prototypen und Funktionsteile günstig und schnell aus Polyamid, Oberflächenfinish wie Färbung, Polierung oder Lackierung möglich Das Selektive Lasersintern, abgekürzt SLS, arbeitet ähnlich wie das klassische 3D Druckverfahren (3dp). Beim Lasersintern wird zuerst eine Schicht Pulver aufgetragen, die mittels Laserstrahl an den gewünschten Stellen "verschmolzen" wird. Anschließend senkt sich die Bauplattform um 0,1 mm ab und es wird erneut Pulver aufgetragen und verfestigt. Nicht verschmolzenes Pulver dient als Stützmaterial für überragende Geometrien des gesinterten Objektes. Besonders bei kleineren Modellen ist dieses Verfahren auch für Serienfertigungen interessant, da keine Werkzeugkosten anfallen.
Selektiv Glühen

Selektiv Glühen

Selektiv Glühen ist ein spezialisierter Prozess, der es ermöglicht, bestimmte Bereiche eines Werkstücks gezielt zu erhitzen, um gewünschte Materialeigenschaften zu erzielen. Diese Technik wird häufig in der Fertigung von Präzisionskomponenten eingesetzt, wo unterschiedliche Härtegrade innerhalb eines Bauteils erforderlich sind. Die Wilhelm Sölch GmbH hat sich auf das selektive Glühen spezialisiert und bietet maßgeschneiderte Lösungen, die den individuellen Anforderungen ihrer Kunden gerecht werden. Durch den Einsatz von Hochfrequenzgeneratoren kann die Wilhelm Sölch GmbH das selektive Glühen mit hoher Präzision und Effizienz durchführen. Dies führt zu einer verbesserten Produktqualität und einer längeren Lebensdauer der Bauteile. Kunden profitieren von der Flexibilität und den innovativen Ansätzen des Unternehmens, die es ihnen ermöglichen, ihre Produktionsprozesse zu optimieren und gleichzeitig die Kosten zu senken.
Vision Systeme

Vision Systeme

Vision Systeme für die industrielle Bildverarbeitung Unsere Lösung im Bereich der Bildverarbeitung umfasst die Kamera (inklusive Beleuchtung), den Kamerajob zur Auswertung und die passende Softwareschnittstelle für Ihren Beschriftungsprozess. Wir bieten Ihnen zu Ihrem Produktionsprozess die passende Prozessüberwachungssysteme. Wollen Sie beispielsweise vor Start der Beschriftung automatisch die Position korrigieren? Oder das Beschriftungsergebnis auf seine Güte prüfen? In diesem Fall stellt ein Kamerasystem mit Softwareanbindung aus dem Hause SHT die optimale Ergänzung dar. Die Daten der Validierung können automatisch in Ihren Datenbanksystemen gespeichert werden. Diese Datenbank kann um eine spezifische Softwarelösung gemäß Ihren Bedürfnissen ergänzt werden. Toleranzen der Aufnahmen oder der Bauteile können vor der Beschriftung korrigiert werden, ohne dass das Bauteil bewegt werden muss, da diese Korrektur durch den Beschriftungskopf vorgenommen wird. Das Vision System kann in Ihren automatischen Produktionsablauf integriert werden.
Ultraschallschweißen

Ultraschallschweißen

Im Bereich von hochwertigen technischen Baugruppen schaffen wir stets kundenorientierte Lösungen. Nach Konstruktion, Werkzeugbau (Formenbau), Fertigung aller notwendigen Einzelteile bieten wir Ihnen fertig montierte Teile. Selbstverständlich auch mit integrierten elektronischen oder mechanischen Bauteilen. ---
Hochauflösender Mess-Scanner

Hochauflösender Mess-Scanner

Alfavision bietet mit einem neuen modularen, kostengünstigen Mess-Scanner eine flexible Lösung für die Vermessung und Kontrolle von ebenen Bauteilen an. Die Länge des Mess- Scanners ist variabel von 80 mm bis beispielsweise 1600 mm. Das Mess-System kann dank der hohen Auflösung von 600 dpi zudem Strukturen prüfen, messen und gegebenenfalls Fehler im Trägermaterial wie Unebenheiten detektieren. Auf der gesamten Prüfbreite wird das Messobjekt lückenlos mit parallelen Sichtstrahlen erfasst. Die Auswertung erfolgt über PC. MS-175CL Modularer Mess-Scanner 600 dpi 7000 Zeilen/s Parallaxenfreie Optik Variable Längen 60 MByte/s Triggerbar Robustes Industriegehäuse Modular, flexibel, kostengünstig Variable Längen alfavision bietet mit dem neuen modularen, flexiblen Mess-Scanner MS-175CL eine kostengünstige Lösung für die Vermessung und Kontrolle von ebenen Bauteilen an. Die Länge des Mess-Scanners ist variabel von 175 mm bis beispielsweise 3500 mm. Flexibles Mess-System Das Mess-System kann dank der hohen Auflösung von 600 dpi zudem Strukturen prüfen, messen und gegebenenfalls Fehler im Trägermaterial wie Unebenheiten detektieren. Auf der gesamten Prüfbreite wird das Messobjekt lückenlos mit parallelen Sichtstrahlen erfasst. Die Ansteuerung und Datenauswertung erfolgt über einen PC. Die einfache Bedienung gekoppelt mit einer Erfassungsrate bis zu 7000 Zeilen pro Sekunde erlaubt eine schnelle Generierung der Messergebnisse. Einfache Bedienung gekoppelt mit einer Erfassungsrate bis zu 7000 Zeilen pro Sekunde erlauben eine schnelle Auswertung der Messergebnisse. Das neue Messsystem von alfavision lässt sich z. B. für die Stanzblechkontrolle, Leiterplattenkontrolle, Gewebeprüfung und Druckbildkontrolle einsetzen. Eine optionale Kamera zur Bestimmung der Werkstückorientierung erübrigt aufwändiges Positionieren von Bauteilen. Vorteil: Kostenersparnis bei der Mechanik, auf einen Gleichlaufausgleich oder Positionierhilfen kann komplett verzichtet werden. Erweiterbarkeit Der Mess-Scanner kann über einen seiner optisch getrennten IO-Eingänge mit einem Inkrementalgeber verbunden werden. Gleichlaufschwankungen der Transporteinrichtung während der Bildaufnahme können so ausgeglichen werden. Gleichzeitig kann die Länge der Mess-Objekte mit hoher Auflösung gemessen werden. Der Mess-Scanner benötigt für den Start der Messung in der Regel kein gesondertes externes Signal, da er das Vorhandensein von Messobjekten selbständig erkennt. Über 2 IO-Ausgänge können Signale direkt am Sensor ausgegeben werden. Anwendungen Das neue Messsystem von alfavision lässt sich z. B. für die Stanzblech- und Leiterplattenkontrolle sowie zur Gewebeprüfung und Druckbildkontrolle einsetzen. Dabei lassen sich Auf-, Durch- und Streiflichtbeleuchtungen realisieren. Technische Daten Grauwerttiefe: 8 Bit Auflösung: 42 μm bei 600 dpi (optional 300 dpi) Datenschnittstelle: CameraLink Arbeitstemperatur: 0° bis +40°C Stromversorgung: 24V oder 230V/50Hz IO-Kanäle: 3 Eingänge, optisch getrennt, optional 5…24V 2 Ausgänge, optional 5V…24V Arbeitsabstand: 8 mm oder 15mm
Verschleißmessung

Verschleißmessung

Verzahnungswerkzeuge sind in unserer Branche ein großes Thema – nicht nur bei der Herstellung und Anwendung, sondern erst recht beim Nachschärfen, Prüfen und Protokollieren. Nicht selten ist der Aufwand zum Schärfen und Prüfen der Werkzeuge eklatant hoch, um den Ansprüchen an Genauigkeit und Formtreue gerecht zu werden. Geht es doch beim Nachschärfen insbesondere darum, eine Konturverzerrung des Fräserprofils zu vermeiden und gleichzeitig möglichst wenig Material abzutragen, um die Lebensdauer des Werkzeugs hoch zu halten. Ein Thema, das bei Schleif- und Schärfbetrieben sehr oft die Spreu vom Weizen trennt.
Lasergravuren

Lasergravuren

Laserbeschriftung auf Kunststoff und Metall Verschiedene Lasergravuren auf Kunststoff und Metall möglich. Wir freuen uns auf Ihre Anfrage.
Oberflächenbeschichtung Messen

Oberflächenbeschichtung Messen

Wir arbeiten mit speziellen Unternehmen für die Oberflächenbeschichtung (eloxieren, vernickeln) zusammen. Messen Mit unserer CNC-Koordinaten-Messmaschine können wir Ihre Werkstücke fachgerecht vermessen. Linear Hight von Mitutoyo Messhöhe 500 mm CNC-Messmaschine Fabrikat Mora Messbereich 600 x 1000 x 500 mm Messprojektor
INDUSTRIELLES MESSEN

INDUSTRIELLES MESSEN

Für Qualitätssicherung und Qualitätskontrolle sind unterschiedliche Ansätze und Maßnahmen zur Sicherstellung der durch Sie als Kunde und durch Normen festgelegten Qualitätsanforderungen erforderlich. Um eine konforme und geforderte hohe Qualität an Ihrem Produkt zu gewährleisten, sind wir mit der dafür notwendigen Messtechnik ausgestattet. Die Überwachung und Kalibrierung unser Messtechnik und Überwachung der Messmittel liegt in den Händen zertifizierter und akkreditierter Partner. Gerne bieten wir Ihnen unsere Möglichkeiten des industriellen Messens auch als Dienstleistung an.
Laserbohren

Laserbohren

Laserfeinbohren unterschiedlichster Materialien bis zu 3µm Durchmesser. Weitere Informationen unter https://lasermikrobearbeitung.de/ Die Vorteile des Laserbohrens: • Lochdurchmesser ab 3 µm • Hohe Präzision • Keine Mikrorisse • Sehr geringer Wärmeeintrag in das umliegende Material • Scharfkantiger Bohrungsrand ohne Aufwürfe und Grat • Außerordentliche Gestaltungsfreiheit in der Lochgeometrie • Berührungsloses Verfahren • Kein Werkzeugverschleiß Bearbeitbare Materialien : o Metalle o Keramiken o Glas o Polymere o Halbleiter o Faserverbundstoffe o Dünnschichtsysteme Das Bohren von Mikrolöchern, auch Mikro-Vias genannt, mit wohldefinierter Geometrie gewinnt in verschiedensten Bereichen der Industrie zunehmend an Bedeutung. Die Anwendungen sind dabei äußerst vielfältig. Das Laserbohren mit unterschiedlichsten Bohrstrategien hat sich dabei in verschiedenen Bereichen gegenüber konventionellen Herstellungsverfahren durchgesetzt. Die Einsatzgebiete reichen dabei von der Herstellung von Mikrobohrungen in Durchflussfiltern, Mikrosieben und Inhalatoren über Bohrungen in Hochleistungssolarzellen bis hin zu Einspritzdüsen in der Automobilindustrie oder Herstellung von Inkjet-Druckdüsen. Die Vorteile des Laserbohrens: Das Laserbohren ist eine Kraft- und kontaktfreie Bearbeitung. Eine Verformung des Materials durch Werkzeuge findet somit nicht statt. Es entstehen zudem keine zusätzlichen Werkzeugkosten durch Verschleiß. Die Lasertechnik punktet zudem mit einem genau dosierbaren Energieeintrag, der geringen Wärmezufuhr ins Material sowie der außerordentlich hohen Präzision und Reproduzierbarkeit. Eine Nachbearbeitung der Bohrung ist deshalb nicht notwendig. Zusätzliche Vorteile entstehen durch die Flexibilität in der Bohrungsgeometrie. So können beispielsweise durch Variationen in der Bearbeitungsstrategie Mikrobohrungen mit einem großen Aspektverhältnis (dem Verhältnis von Bohrtiefe zu Bohrungsdurchmesser) oder auch Löcher mit definierten Wandwinkeln hergestellt werden. Laserquellen Je nach Anwendung und Aufgabe kommen bei der Herstellung dieser Mikrobohrungen unterschiedliche Laser zum Einsatz. Während für Kunststoffe oft Excimer-Laser oder Festkörperlaser im UV-Bereich verwendet werden, sind es in der Metallbearbeitung meistens Festkörperlaser im sichtbaren oder Infraroten Spektralbereich. Die Größe der dabei erzielten Bohrungen ist unter anderem abhängig von Material, Strahlquelle, Pulsdauer und Energiedichte und kann dadurch von wenigen Mikrometern bis zu einigen Millimetern variieren. Ein weiterer entscheidender Faktor ist die Wahl der Bohrtechnik. Bohrverfahren Perkussionsbohren: Doch die Wahl des richtigen Lasers allein ist für den Erfolg nicht ausreichend. Auch das entsprechende Bohrverfahren spielt eine entscheidende Rolle. Bekannte Bohrtechniken sind das Perkussionsbohren und das Trepanieren. Beim Perkussionsbohren werden mehrere Laserpulse auf die Oberfläche des Materials geführt bis das Loch erzeugt oder die gewünschte Bohrtiefe des Sacklochs erreicht ist. Dieses Verfahren ist sehr schnell, es können mehrere hundert- oder tausend Bohrungen pro Sekunde erzeugt werden. Je nach Strahlführung lassen Bohrungen mit festem Durchmesser oder variabler Bohrungsgeometrie (Konizität) realisieren. Trepanierbohren: Beim Trepanieren werden die Löcher ausgeschnitten. Die Vorteile des Trepanierens liegen zum einen in der Herstellung von Löchern mit großem Bohrungsdurchmesser und großer Reproduzierbarkeit, sowie der Möglichkeit der Herstellung von nicht kreisrunden Bohrungen. Zugleich wird beim Trepanieren die Konizität der Bohrung verringert. FSLA™ für transparente Materialien: Die patentierte FSLA™-Technologie (Flow Supported Laser Ablation) ermöglicht das Bohren von Mikrolöchern mit präziser Geometrie (gerade, zylindrisch) in transparenten Materialien wie zum Beispiel Glas oder Saphir. Zudem ist diese Bohrverfahren perfekt für die Herstellung komplexer Freiform- und Hinterschnittgeometrien geeignet. Weitere Informationen: https://3d-micromac.de/laser-mikrobearbeitung/applikationen/fsla/
Oberflächen­­ehandlung

Oberflächen­­ehandlung

Die Oberflächenbehandlung ist ein unverzichtbarer Prozess, um Bauteile nicht nur optisch zu veredeln, sondern auch vor Korrosion, Verschleiß und anderen äußeren Einflüssen zu schützen. Unsere hochwertigen Verfahren der Oberflächenbearbeitung bieten maßgeschneiderte Lösungen für verschiedene Branchen, darunter die Automobilindustrie, den Maschinenbau und die Medizintechnik. Ob Metall, Kunststoff oder andere Materialien – wir sorgen dafür, dass Ihre Produkte eine lange Lebensdauer und höchste Beständigkeit aufweisen. Zu unseren Oberflächenbehandlungsverfahren zählen unter anderem Galvanisierung, Eloxieren, Pulverbeschichtung und Lackierung. Jedes Verfahren wird individuell an die Anforderungen des jeweiligen Bauteils angepasst, um optimale Ergebnisse zu gewährleisten. Durch unsere modernen Technologien erzielen wir eine gleichmäßige und hochwertige Beschichtung, die sowohl funktionale als auch ästhetische Anforderungen erfüllt. Besonders im industriellen Bereich ist die Oberflächenbehandlung entscheidend, um die Leistungsfähigkeit von Bauteilen zu erhöhen. Sie bietet nicht nur einen hervorragenden Schutz vor Abnutzung und chemischen Einflüssen, sondern verbessert auch die mechanischen Eigenschaften des Werkstücks. So kann die Reibung verringert, die Härte erhöht und die Beständigkeit gegen Umwelteinflüsse signifikant gesteigert werden. Unsere Expertise in der Oberflächenbehandlung ermöglicht es uns, auch anspruchsvollste Projekte zu realisieren. Egal, ob es sich um Einzelanfertigungen oder Serienproduktion handelt – wir bieten Ihnen maßgeschneiderte Lösungen, die höchsten Ansprüchen gerecht werden. Unser erfahrenes Team berät Sie gerne bei der Auswahl der passenden Verfahren für Ihre individuellen Anforderungen.
Lasergravuren

Lasergravuren

Mit unserem Lasersystem lassen sich Gravuren auf Acrylglas aber auch auf vielfältigen anderen Materialien durchführen. Einsatzgebiete für Sie als Kunde der BSA Kunststofftechnik sind so vielfältig wie Ihre Ideen. Buchstaben, auch selbstklebend Werbetechnik Laden- und Messebau Architekturmodellbau Displays POS Materialien Außen- und Innenbeschilderung, auch beleuchtet Acryltrophäen für Ihre Veranstaltung
Thermisches Spritzen

Thermisches Spritzen

Bestehen hohe Ansprüche an die Korrosionsbeständigkeit von Bauteilen wird das thermisches Spritzen eingesetzt. Das trifft zum Beispiel zu auf Bauteile aus dem Offshore-Bereich und der Fahrzeugindustri
Werkstoffmodifikation

Werkstoffmodifikation

Wenn Ihr Werkstoff schlapp macht, hilft ein Schichtwechsel weiter! Wir überarbeiten und verändern Ihren bisherigen Werkstoff gekonnt und verhelfen ihm zu neuen Höchstleistungen hinsichtlich vieler kritischer Angriffe durch unser Spezial Know-how und dem anwendungsorientierten Einsatz von: • Metallischen Beschichtungen • Diffusionsbeschichtung als Kombination der genannten Schichten • Pulverpackbeschichtungsverfahren, Slurrybeschichtungen • geeigneter Nachbehandlung (Passivierung, Konversionsschicht, Anodisieren, Plasmaanodisieren…)
VERSCHLEISSMESSUNG

VERSCHLEISSMESSUNG

Verzahnungswerkzeuge sind in unserer Branche ein großes Thema – nicht nur bei der Herstellung und Anwendung, sondern erst recht beim Nachschärfen, Prüfen und Protokollieren. Nicht selten ist der Aufwand zum Schärfen und Prüfen der Werkzeuge eklatant hoch, um den Ansprüchen an Genauigkeit und Formtreue gerecht zu werden. Geht es doch beim Nachschärfen insbesondere darum, eine Konturverzerrung des Fräserprofils zu vermeiden und gleichzeitig möglichst wenig Material abzutragen, um die Lebensdauer des Werkzeugs hochzuhalten. Ein Thema, das bei Schleif- und Schärfbetrieben sehr oft die Spreu vom Weizen trennt. Darum beginnt unser Service schon bei der Verschleißuntersuchung. Unser erster Arbeitsschritt ist es, die Werkzeuge in unserer Ultraschallanlage zu reinigen, um eine bestmögliche Weiterverarbeitung zu gewährleisten. Damit nicht genug: Als Nächstes wird vor dem Nachschärfvorgang der maximale Verschleiß am Umfang der Zähne bestimmt. Hierzu werden alle Zähne am Umfang mittels Mikroskop untersucht und im Anschluss protokolliert. Des Weiteren werden erkannte Verschleißmarken markiert und das Maximum als Messwert ausgegeben. Dieser maximale Verschleiß dient dann in der Werkzeugschleifmaschine als Kenngröße für den Abschliffbetrag beim Nachschärfen. Somit wird das Werkzeug nur so weit nachgeschliffen, wie dies zur Gewährleistung einer durchgehend scharfen Schneidkante notwendig ist. Es wird vermieden, dass am Werkzeug zu wenig weggeschliffen wird und einzelne Zähne noch Verschleißmarken aufweisen oder, dass aus Sicherheitsgründen unnötig viel weggeschliffen wird und so die Lebenszeit der teuren Werkzeuge unnötig verkürzt wird. Anschließend unterziehen wir Ihre Werkzeuge einer weiteren Kontrolle auf Restverschleiß oder Beschädigungen nach dem Nachschärfen. Dann erfolgt das Beschichten der Werkzeuge. Im Anschluss an das Beschichten wird eine Endkontrolle durchgeführt. Hier prüfen wir nochmals auf eventuelle Beschädigungen, um Ihnen eine fachgerechte Instandsetzung zu gewährleisten und Ihnen einwandfreie Ware zu garantieren.
Selektives Laserschmelzen und additive Fertigung von BENSELER

Selektives Laserschmelzen und additive Fertigung von BENSELER

Egal ob Medizintechnik, Prototypenbau, Klein- bis Mittelserien im Automotive oder Formenbau: BENSELER unterstützt unterschiedlichste Branchen bei der innovativen Fertigung von Bauteilen mithilfe des Selektiven Laserschmelzens – und das seit über 10 Jahren. Bei BENSELER erhalten Sie das Rundumsorglos-Paket in der Fertigung durch die 3D-Laser BW. Damit sind BENSELER und die 3D-Laser BW gemeinsam Komplettanbieter, von der Konstruktion bis zum einbaufertigen Bauteil. Ob konventionelle Geometrien, Funktionsintegration, Kühl-, Medien- oder Luftkanäle in Ihrem Bauteil, BENSELER findet für Sie die optimale Lösung. Erfahren Sie im Folgenden mehr über das Selektive Laserschmelzen Was ist das Selektive Laserschmelzen? Mithilfe des Selektiven Laserschmelzens baut BENSELER Komponenten Schicht Schicht auf Basis von 3D-Daten für den Druck auf. Dafür wird Metall in Pulverform auf eine Grundplatte aufgetragen und von einem Faserlaser lokal umgeschmolzen. Nach jeder Schicht senkt sich die Platte ab und neues Pulver wird aufgetragen – der Zyklus beginnt von vorn. Schicht für Schicht aufgebaut entsteht so das fertige Bauteil, das sich direkt verwenden oder entsprechend der Anforderungen weiterbearbeiten lässt. Warum Selektives Laserschmelzen? Mit dem Selektiven Laserschmelzen lässt sich Ihr Bauteil individuell gestalten. Das Verfahren ist pulverbettbasierend geeignet um filigranere Bauteile herzustellen, stellt Kühlkanäle ab 0.5 mm Durchmesser her und ist ideal für die Herstellung kleinerer funktionsintegrierter Bauteile. Derzeit verarbeitet BENSELER die folgenden Materialien: 1.4404 1.4542, Inconel 625, Inconel 718, AlSi10Mg, 1.2709 Eigenschaften von SLM im Überblick Verfahren SLM verfügt über zahlreiche Eigenschaften: • große spezifische Dichten (> 99 %) des verarbeiteten Materials • mechanische Eigenschaften der SLM-Bauteile vergleichbar bzw. teilweise besser als bei konventionell mechanisch bearbeiteten Teilen • Kurze Produktentwicklungszeit durch Wegfall von Werkzeug- und Formenbau • Gewichtsoptimiert • Erzeugen konturnaher Kühlungen für Spritz- und Druckgusswerkzeuge möglich • Verarbeitung von hochfesten Alulegierungen über Edelstähle bis hin zu Sonderstählen möglich. Vorteile des Selektiven Laserschmelzens hat gegenüber konventionellen Fertigungsmethoden den Vorteil, dass das Entwickeln und Fertigen aufwändiger und kostenintensiver Werkzeuge und Formen entfällt. • Gestaltung neuer, komplexer Geometrien und Funktionen • Unbehandelte Oberflächen in Feingussqualität • Herstellung von fast grenzenlosen Bauteilgeometrien • kurze Produktionszeiten • flexible Produktion vor Ort und nach Bedarf • Reduzierung von Lagerkosten • hybride Bauweise möglich • werkzeugloses Arbeiten möglich • nachhaltiges Verfahren aufgrund des geringen Materialverbrauchs Anwendungsbereich des Selektiven Laserschmelzens -Verfahren ist sowohl für die Prototypen- als auch Serienfertigung geeignet und lässt sich in der Automobilindustrie, Luft- und Raumfahrt, Medizintechnik, im Rennsport sowie im Formen-/Werkzeugbau und Maschinenbau einsetzen. Der Prozessablauf des Selektiven Laserschmelzens Erfahren Sie im Folgenden mehr über den Prozess des Selektiven Laserschmelzens Schritt 1: Konstruktion und Simulation Nach dem Dateneingang erfolgt eine Machbarkeitsprüfung. Auf dieser Basis bietet BENSELER dem Kunden eine Beratung für das optimale Vorgehen. Das Bauteil wird danach für SLM
Thermisches Spritzen

Thermisches Spritzen

Beim thermischen Spritzen werden die gewünschten Oberflächenmaterialien in Form von Draht, Stab oder Pulver je einem Brenner an- oder aufgeschmolzen und auf der Oberfläche des Bauteils abgelagert. Die Oberfläche wird meistens zuvor durch Strahlen aufgeraut, um eine Verklammerung der aufgeschmolzenen Partikel auf der Oberfläche zu gewährleisten. Dadurch entsteht eine fest haftende Schicht. Dabei sind je nach Material Schichtdicken > 2mm möglich. Durch bauteilspezifische Abdeckungen können Funktionsflächen partiell beschichtet werden. Die Haftfestigkeit auf den Kanten ist eingeschränkt. Deshalb sollten Kanten mit einem Radius > 0,7 mm verrundet werden. Die Oberfläche kann je nach aufgespritztem Material durch Schleifen, Drehen, Läppen, Polieren usw. maßgenau nachgearbeitet werden. Der Beschichtungswerkstoff kann ein einzelnes Element, eine Legierung oder ein Werkstoffverbund sein. Da keine unzulässige Temperaturbeanspruchung des Substrats während des Beschichtens auftritt, werden Gefügeänderungen des Grundwerkstoffs vermieden. Die Auswahl an Produkten und Schichten ist praktisch unbegrenzt. Die Beschichtungen bestehen meist aus Metallen, Keramiken, Karbiden oder individuell zusammengesetzten Spritzwerkstoffen. Die Verwendung von thermisch gespritzten Beschichtungen ist eine fortschrittliche und kostengünstige Methode, um einer Oberfläche gewünschte Eigenschaften zu verleihen. Diese ermöglichen eine gesteigerte Leistungsfähigkeit in dem jeweiligen Anwendungsfall. Durch die dem Anwendungsfall angepasste Oberfläche, können beim Grundmaterial oft Kosten gespart werden. Laut Studien werden in Deutschland erst 10% des Anwendungspotentials thermischer Beschichtungen ausgeschöpft.
Oberflächenfunktionalisierung

Oberflächenfunktionalisierung

Muster und Strukturen im Nanomaßstab Für die Strukturierung von Oberflächen auf chemischem Wege oder mit Partikeln hat unser Team Zugriff auf viele verschiedene Technologien. Eine Auswahl: Tauchbeschichten oder Tropfengießen mit Slurries, Spritzbeschichten und Ultraschall-Spritzbeschichten, Plasmaspritzen, chemische und elektrochemische Anwendungen etc.
Sonderlösungen

Sonderlösungen

Special Solutions von Frey & Winkler bieten maßgeschneiderte Lösungen für eine Vielzahl von Branchen. Diese spezialisierten Produkte sind das Ergebnis jahrelanger Erfahrung und technischer Expertise, die es dem Unternehmen ermöglichen, innovative und kundenspezifische Lösungen zu entwickeln. Die Special Solutions umfassen eine breite Palette von Produkten, die auf die spezifischen Anforderungen der Kunden zugeschnitten sind, um deren Geschäftsziele zu unterstützen und zu fördern. Durch den Einsatz modernster Technologien und Materialien bietet Frey & Winkler Special Solutions, die sowohl funktional als auch ästhetisch ansprechend sind. Diese Lösungen sind darauf ausgelegt, die Effizienz und Leistung der Produkte der Kunden zu verbessern, indem sie innovative Ansätze und Techniken integrieren. Die Special Solutions sind ein Beweis für das Engagement von Frey & Winkler, seinen Kunden stets die besten und fortschrittlichsten Lösungen zu bieten, die auf dem Markt verfügbar sind.